Li+ + NO3− → LiNO3
Last updated:
- Reaction of lithium ion and nitrate ion
The reaction of lithium ion and nitrate ion yields lithium nitrate. This reaction is an acid-base reaction and is classified as follows:
Table of contents
Reaction data
Chemical equation
- Reaction of lithium ion and nitrate ion
General equation
- Reaction of cation and anion
- CationLewis acid + AnionLewis base ⟶ ProductLewis conjugate + (H2O)
Oxidation state of each atom
- Reaction of lithium ion and nitrate ion
Reactants
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
Li+ | Lithium ion | 1 | Lewis acid | Cation |
NO3− | Nitrate ion | 1 | Lewis base | Anion |
Products
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
LiNO3 | Lithium nitrate | 1 | Lewis conjugate | – |
Thermodynamic changes
Changes in standard condition (1)
- Reaction of lithium ion and nitrate ion◆
ΔrG 0.1 kJ/mol K 0.96 × 100 pK 0.02
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 0.00 | 0.1 | 0.4 | 0.0 |
per 1 mol of Lithium ion | 0.00 | 0.10 | 0.40 | 0.0 |
per 1 mol of Nitrate ion | 0.00 | 0.10 | 0.40 | 0.0 |
per 1 mol of | 0.00 | 0.10 | 0.40 | 0.0 |
Changes in standard condition (2)
- Reaction of lithium ion and nitrate ion◆
ΔrG −2.0 kJ/mol K 2.24 × 100 pK −0.35
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | – | −2.0 | – | – |
per 1 mol of Lithium ion | – | −2.0 | – | – |
per 1 mol of Nitrate ion | – | −2.0 | – | – |
per 1 mol of | – | −2.0 | – | – |
Thermodynamic data of reactants
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
Li+ (g) | 685.783[1] | – | – | – |
Li+ (ao) | -278.49[1] | -293.31[1] | 13.4[1] | 68.6[1] |
NO3− (ao) | -207.36[1] | -111.25[1] | 146.4[1] | -86.6[1] |
* (g):Gas, (ao):Un-ionized aqueous solution
Thermodynamic data of products
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
LiNO3 (cr) | -483.13[1] | -381.1[1] | 90.0[1] | – |
LiNO3 (ai) | -485.85[1] | -404.5[1] | 160.2[1] | -18.0[1] |
LiNO3 (ao) | – | -406.6[1] | – | – |
LiNO3 (cr) 3 hydrate | -1374.4[1] | -1103.5[1] | 223.4[1] | – |
* (cr):Crystalline solid, (ai):Ionized aqueous solution, (ao):Un-ionized aqueous solution
References
List of references
- 1Janiel J. Reed (1989)The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI UnitsNational Institute of Standards and Technology (NIST)
- ^ ΔfH°, 685.783 kJ · mol−1
- ^ ΔfH°, -278.49 kJ · mol−1
- ^ ΔfG°, -293.31 kJ · mol−1
- ^ S°, 13.4 J · K−1 · mol−1
- ^ Cp°, 68.6 J · K−1 · mol−1
- ^ ΔfH°, -207.36 kJ · mol−1
- ^ ΔfG°, -111.25 kJ · mol−1
- ^ S°, 146.4 J · K−1 · mol−1
- ^ Cp°, -86.6 J · K−1 · mol−1
- ^ ΔfH°, -483.13 kJ · mol−1
- ^ ΔfG°, -381.1 kJ · mol−1
- ^ S°, 90.0 J · K−1 · mol−1
- ^ ΔfH°, -485.85 kJ · mol−1
- ^ ΔfG°, -404.5 kJ · mol−1
- ^ S°, 160.2 J · K−1 · mol−1
- ^ Cp°, -18.0 J · K−1 · mol−1
- ^ ΔfG°, -406.6 kJ · mol−1
- ^ ΔfH°, -1374.4 kJ · mol−1
- ^ ΔfG°, -1103.5 kJ · mol−1
- ^ S°, 223.4 J · K−1 · mol−1